Proof that A383500 is the Complement of A382935

Quinn Savitt

Theorem

Theorem 1. The sequence A383500 consists exactly of the natural numbers missing from A382935. That is,

$$A383500 = \mathbb{N}^+ \setminus A382935$$

Proof

1. Definitions

Definition 1 (Set A (A383500)). Define

$$\mathcal{A} = \{ n \in \mathbb{N}_0 \mid (i) \exists i, \ d_i = 9 \ or \ (ii) \ \forall i, d_i \ odd \Rightarrow d_{i-1} \leq d_i \},$$

where d_1, d_2, \ldots, d_k are the decimal digits of n from left to right.

Definition 2 (Set \mathcal{B} (A382935)). Define

$$\mathcal{B} = \{ n \in \mathbb{N}_0 \mid (i') \ \forall i, d_i \ odd \Rightarrow d_{i-1} > d_i \}.$$

2. Disjointness

Lemma 1. The sets A and B are disjoint:

$$A \cap B = \emptyset$$
.

Proof. Suppose $n \in \mathcal{A}$.

By definition of A:

- 9 is a digit OR
- Every odd digit is preceded by a smaller digit.

Note there are no digits greater than 9. Thus, n cannot satisfy condition (i') defining \mathcal{B} .

Hence, $n \notin \mathcal{B}$.

Similarly, if $n \in \mathcal{B}$, then n violates both of the rules required to be in \mathcal{A} . Thus, \mathcal{A} and \mathcal{B} are disjoint.

3. Completeness

Lemma 2. Every natural number belongs to exactly one of A or B.

Proof. Let $n \in \mathbb{N}_0$.

- If n satisfies both condition (i) (every odd digit is followed by a smaller digit) and (ii) (does not end in 1), then $n \in \mathcal{A}$. Otherwise, if n fails either condition:
 - 9 is not a digit of n.
 - Any odd digit is preceded by a greater digit, which satisfies (i').

Thus, every positive integer belongs to exactly one of \mathcal{A} or \mathcal{B} .

4. Conclusion

From the disjointness and completeness lemmas, it follows that:

$$\mathcal{A} = \mathbb{N}_0 \setminus \mathcal{B}$$
.

Since A383500 enumerates \mathcal{A} and A382935 enumerates \mathcal{B} , we conclude:

$$A383500 = \mathbb{N}_0 \setminus A382935$$

References

[1] OEIS Foundation Inc. (2025), The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org.

A382935: https://oeis.org/A382935

[2] OEIS Foundation Inc. (2025), The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org.

A383500: https://oeis.org/A383500