Proof that A383250 is the Sorted Version of A342045

Theorem

Theorem 1. A383250 is the sorted version of A342045. That is,

A383250 = sorted(A342045).

Proof

We proceed by precise definitions and logical steps.

1. Definitions

Definition 1 (Set A). Define

 $\mathcal{A} = \{ n \in \mathbb{N}_0 \mid (i) \ \forall i, \ d_i \ odd \ \Rightarrow d_{i+1} < d_i, \ and \ (ii) \ d_k \neq 1 \},\$

where d_1, d_2, \ldots, d_k are the decimal digits of n from left to right.

Definition 2 (Extendable Set). A finite set $F \subseteq \mathbb{N}_0$ is extendable if

 \forall finite $F' \subseteq F$, $\exists m \in \mathbb{N}_0 \setminus F'$ such that $F' \cup \{m\}$ satisfies conditions (i) and (ii).

Definition 3 (Greedy Construction of A342045). The sequence A342045 is generated by:

- Starting with $a_1 = 0$.
- At each step $n \ge 1$, choosing the smallest nonnegative integer k not yet selected such that adding k preserves extendibility.

2. Lemma 1: Greedy Only Selects Numbers in \mathcal{A}

Lemma 1. Every number selected by the greedy construction A342045 belongs to A.

Proof. Suppose $k \in \mathbb{N}_0$ is considered for selection.

- If k violates condition (i), it cannot be selected: the violation is local and cannot be repaired by any extension.
- If k ends with digit 1, then k is disallowed: no future extensions involving k would satisfy the rules.

Thus, only numbers satisfying conditions (i) and (ii) can be selected. Hence,

 $set(A342045) \subseteq \mathcal{A}.$

3. Lemma 2: Every Number in \mathcal{A} Appears in A342045

Lemma 2 (Monotonicity of extendibility). If F is an extendable finite set and $n \in A$, then $F \cup \{n\}$ is extendable.

Proof. Let $F' \subseteq F \cup \{n\}$ be any finite subset.

- If $n \notin F'$, then $F' \subseteq F$, and extendibility of F provides the required m.
- If $n \in F'$, then $F' \setminus \{n\} \subseteq F$ is finite, and again extendibility of F provides the required m.

Since $n \in \mathcal{A}$, and \mathcal{A} is closed under the rules, the extension is valid. Thus,

F extendable $\Rightarrow F \cup \{n\}$ extendable.

Lemma 3 (Eventual Selection). Every $n \in A$ eventually appears in A342045.

Proof. Proceed by induction on $n \in \mathbb{N}_0$.

Base case: n = 0 is selected first.

Inductive step: Assume all m < n with $m \in \mathcal{A}$ have been selected.

When considering n, all smaller numbers have been chosen.

By monotonicity of extendibility (Lemma 2), adding n to the current list maintains extendibility.

Thus, n is eligible and selected at that time.

Hence,

$$\mathcal{A} \subseteq \text{set}(A342045).$$

4. Set Equality and Sorting

Combining Lemmas 1 and 3, we obtain:

$$set(A342045) = \mathcal{A}$$

Since A342045 lists elements of \mathcal{A} in greedy order, and A383250 lists \mathcal{A} in increasing order, it follows that:

$$A383250 = sorted(A342045)$$

References

[1] OEIS Foundation Inc. (2025), The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org.
A342045: https://oeis.org/A342045
A383250: https://oeis.org/A383250