Proof that A383249 is the Complement of A342045

Quinn Savitt

Theorem

Theorem 1. The sequence A383249 consists exactly of the positive integers missing from A342045. That is,

 $A383249 = \mathbb{N}^+ \setminus A342045$

Proof

1. Definitions

Definition 1 (Set \mathcal{A} (A342045)). Define

 $\mathcal{A} = \{ n \in \mathbb{N}_0 \mid (i) \ \forall i, \ d_i \ odd \ \Rightarrow d_{i+1} < d_i, \ and \ (ii) \ d_k \neq 1 \},\$

where d_1, d_2, \ldots, d_k are the decimal digits of n from left to right.

Definition 2 (Set \mathcal{B} (A383249)). Define

 $\mathcal{B} = \{ n \in \mathbb{N}^+ \mid (i') \exists i \text{ such that } d_i \text{ odd and } d_{i+1} \ge d_i, \text{ or } (ii') d_k = 1 \}.$

That is, \mathcal{B} contains all positive integers that either contain an odd digit immediately followed by a digit greater than or equal to it, or end in 1.

2. Disjointness

Lemma 1. The sets \mathcal{A} and \mathcal{B} are disjoint:

$$\mathcal{A} \cap \mathcal{B} = \emptyset.$$

Proof. Suppose $n \in \mathcal{A}$. By definition of \mathcal{A} :

- Every odd digit is immediately followed by a smaller digit.
- The last digit is not 1.

Thus, \mathcal{A} and \mathcal{B} are disjoint.

Thus, *n* cannot satisfy condition (i') or (ii') defining \mathcal{B} . Hence, $n \notin \mathcal{B}$. Similarly, if $n \in \mathcal{B}$, then *n* violates one of the rules required to be in \mathcal{A} .

3. Completeness

Lemma 2. Every positive integer belongs to exactly one of \mathcal{A} or \mathcal{B} .

Proof. Let $n \in \mathbb{N}^+$.

- If n satisfies both condition (i) (every odd digit is followed by a smaller digit) and (ii) (does not end in 1), then $n \in A$. - Otherwise, if n fails either condition:

- If an odd digit is followed by a digit greater than or equal to it, then $n \in \mathcal{B}$ by (i').
- If the last digit is 1, then $n \in \mathcal{B}$ by (ii').

Thus, every positive integer belongs to exactly one of \mathcal{A} or \mathcal{B} .

4. Conclusion

From the disjointness and completeness lemmas, it follows that:

$$\mathcal{B} = \mathbb{N}^+ \setminus \mathcal{A}.$$

Since A342045 enumerates \mathcal{A} and A383249 enumerates \mathcal{B} , we conclude:

$$A383249 = \mathbb{N}^+ \setminus A342045 \ .$$

References

 OEIS Foundation Inc. (2025), The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org. A342045: https://oeis.org/A342045